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Abstract

In this paper we investigate the effectiveness with which cyber-attacks in client-server networks can
be detected with the help of machine learning algorithms. Basing ourselves on previous research papers,
chiefly Al Nuaimi et al., and taking inspiration from pre-existing datasets, mainly the Edge-IIOT-2022,
we pursue to verify their findings and possibly expand them, drawing further conclusions on the
applicability of ML methods in Intrusion Detection Systems (IDS) in Cyber Security. To this end,
we simulate two types of cyber-attacks, Denial of Service (DOS) and Brute Force (for passwords):
we assemble two datasets with the most relevant features and then evaluate the performance of
some easily interpretable (supervised and unsupervised) ML algorithms on the binary classification
problem of distinguishing between normal and anomalous traffic. In this process, we formulate several
hypotheses that are tested throughout the paper, and make some assumptions to simplify the otherwise
intractable analysis. Also, we explore the trade-off between performance and privacy by employing
the ϵ-differential privacy technique on real datasets.
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ML for Anomaly Detection in Cyber Security

1 | Introduction

1.1 | Network Protocols and Cyber Attacks
In this section, we will briefly explain the main concepts necessary for understanding network traffic
within the context of our paper, focusing on the Transmission Control Protocol (TCP) and the basic ideas
behind the implementation of DOS and Brute Force attacks.
To begin with, TCP is a fundamental protocol within the Internet protocol suite, originating from its
initial network implementation. It often complements the Internet Protocol (IP) and connection is set up
through a procedure known as the three-way handshake. Therefore, once a server is listening on a given
port, the client may establish a connection by the following procedure:

1. The client sends a SYN (synchronize request) to the server and sets the sequence number (tcp.seq)
for the connection to a random value A.

2. In response, the server replies with a SYN-ACK (synchronize acknowledgment). The acknowledgment
number is set to A+1, and the sequence number that the server chooses for the packet is another
random number, B.

3. Finally, the client sends an ACK (acknowledgment) back to the server. The sequence number is set
to the received acknowledgment value i.e. A+1, and the ACK number is set to B+1.

TCP has become so widespread because applications do not need to manage the specific mechanisms for
data transmission between hosts, as TCP handles all the details of the “handshake” as well as of data
transmission. The TCP protocol is also able to detect any issues and requests the retransmission of any
lost/corrupted data to ensure reliable communication.
However, all of these characteristics of TCP show that the latter protocol is optimized for accurate rather
than timely delivery and relatively long delays can thus incur. This makes it particularly vulnerable to
DOS attacks, which, in most cases (including in the implementation used in our DOS dataset), take
advantage of an incomplete three way handshake to lengthen connections and prevent the correct data
flow between a server and its clients. More generally, a denial-of-service (DOS) attack constitutes a
cyber-attack wherein the attacker aims to render a network unavailable to its intended users by temporarily
disrupting the services of a server. This attack is typically executed by inundating the target server with
superfluous requests, with the intention of overwhelming the system and thereby preventing the fulfillment
of legitimate requests.
TCP is thus essential to effectively analyze network traffic and thus a range of associated features are
available to monitor changes in the number of connections, their durations and much more. Such statistics
will be recorded in this paper, as in many previous ones, by means of the Wireshark interface, which
allows to record traffic on any given local network. The most relevant features offered by Wireshark in the
context of TCP, which also mirror the main variables of our datasets and of the Edge-IIot 2022 dataset,
are presented below:

■ Source TCP Address (tcp.srcport) – The port number of the sender in the packet, indicating where
the traffic originated from.

■ Destination TCP Address (tcp.dstport) – The port number of the receiver, showing the intended
recipient of the packet.

■ Sequence Number (tcp.seq) – A unique number assigned to each byte in a TCP connection, ensuring
data is reassembled in the correct order.

■ Acknowledgment Number (tcp.ack) – The number indicating the next expected byte from the sender,
ensuring reliable data delivery.

■ TCP Flags (tcp.flags) – A set of control bits (SYN, ACK, FIN, RST) that manage the state of a
connection (e.g., initiating, closing, or resetting a connection).

■ Window Size (tcp.window size value) – The amount of data (in bytes) that a receiver is willing to
accept before requiring an acknowledgment.

■ TCP Checksum (tcp.checksum) – It is used to verify data integrity and detect transmission errors.

■ TCP Length (tcp.len) – The size of the actual data being carried in the TCP segment.
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■ TCP Stream Index (tcp.stream) – A unique identifier for a TCP session, allowing tracking of packets
within the same connection.

■ Time Since Last Packet (tcp.time delta) – The time difference between consecutive packets in the
same stream, useful for analyzing traffic delays or anomalies.

Another important protocol we will deal with later is the SSH protocol. SSH is a cryptographic network
protocol which allows for secure network services over an unsecured network. Its most notable applications
are remote login and command-line execution. It is a protocol for secure remote access and command
execution over a network.
SSH operates on top of the TCP (Transmission Control Protocol). Specifically SSH runs over TCP port
22 by default. Before SSH communication starts, TCP establishes a connection using the three-way
handshake, as already explained previously. After the client and the server have established a TCP
connection (TCP handshake), then the SSH protocol authenticate the user. Afterwards the encrypted
commands and data are exchanged over TCP.

1.2 | ML in Cyber Security
Detecting anomalies, chiefly cyber-attacks, in large volumes of streaming data in any client-server setting
is a key problem for cybersecurity, which becomes increasingly significant as the quantity and variety of
data collected from various devices continues to expand. This is especially true for IoT and Industrial IoT
(IIoT) systems, often embedded in pivotal communication networks. Therefore, the necessity to find valid
and universally applicable methods for predicting cyber-attacks combined with the impossibility to use
real-world data due to privacy issues, has led to the development of a wide variety of artificial datasets:
e.g. Edge-IIOT-2022 ([6]), X-IIoTID ([1]), and MQTTset ([14]). In our paper, owing to the hardware and
software limitations to which we are constrained, we do not aim to implement a full-fledged simulation of
an IoT system, but we do attempt to realistically simulate network traffic, extracting the most relevant
information to create a valid Intrusion Detection System.

1.3 | Plan of the Paper
In Section 2, in order to gain insight into the most relevant features of network traffic and cyber-attacks,
we focus on the analysis of previously existing datasets, mainly the Edge-IIoT 2022 dataset, reportedly
one of the milestones in the field, [10]. Then in Section 3, we create a machine-independent dataset to
train a decision tree that will distinguish normal traffic between clients and a server from traffic due to a
Denial of Service or DOS attack on the server. In Section 4, we carry out a similar investigation for the
case of the “brute force” password guessing cyber-attack. In Section 5, we explore the trade-off between
accuracy and privacy by employing the ϵ-differential privacy technique. Conclusions and directions for
future work appear in Section 6. In the Appendix, we describe some theoretical aspetcs of the tool we
used, in particular ML algorithms and evaluation metrics. All the Python code which we have written is
available in our GitHub repository, [9].
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2 | Getting to know the Edge-IIot 2022

The Edge-IIoT 2022 ([6]) is an artificial dataset created ad-hoc for the purpose of evaluating IDS solutions
tailored for IoT/IIoT systems. The data it contains is comprehensive and realistic: it is composed of 61
highly correlated features with approximately 150 000 observations in a realistically unbalanced proportion
of normal (85%) and attack (15%) traffic, collected over a non-continuous time period from November 2021
to January 2022. The dataset includes 14 different types of cyber-attacks, and is thus suitable for both
binary (normal vs anomalous traffic) and multi-class (distinguishing between attack types) classification.
As reported in [10], the data allow for the creation of a highly accurate binary-class IDS (with supervised
ML approaches), but the training of a classifier for heterogenous attack types is a less trivial matter
owing to the relatively small number of datapoints for some classes. Numerous ML approaches have
already been tested and compared on the dataset, including decision trees and gradient boosting ([3]),
ensemble learning ([7]), and deep learning ([8]). In this paper, we resort to the supervised algorithm with
the highest reported performance for binary classification, i.e. decision trees ([10], see Appendix A) and
compare it to the performance of two unsupervised algorithms, K-means clustering and DBSCAN (see
Appendix B), on the unlabeled dataset. Other algorithms such as Adaptive Boosting were not considered
due to their relatively poor performance in the IDS problem when compared to decision trees, [10]. This
comparison between supervised and unsupervised methods is carried out with the purpose of assessing the
extent to which the training of supervised ML methods on labelled datasets can improve cyber-attacks’
detection as opposed to models with no previous information.

2.1 | Exploratory Data Analysis and Data Processing
As observed by going through the main variables of he Edge-IIot 2022, the latter is a rather complex
dataset that contains a total of 64 variables including all the TCP features discussed in section 1 along
with their corresponding statistics for other protocols like http and mqtt.

To prepare the Edge-IIOT-2022 dataset for ML analysis, we first removed 18 non-numeric/non-categorical
features. We also removed the ‘attack type’ feature, indicating the different types of attack, and trained
the models using just the binary ‘attack label’ column in pursuit of greater accuracy and simpler models.
The following steps have been implemented in Python using the scikit library.
Furthermore, for unsupervised algorithms, we performed an additional preprocessing step by standardizing
the data (ensuring it has zero mean and unit variance). Thus, if µj and σj denote respectively the mean
and std. deviation of feature j, the transformed data point (for row i) is given by

xij−standardized =
(xij−original − µj)

σj

for observation i. This transformation is particularly important for clustering algorithms (see Appendix
B), because the latter rely on distance-based metrics to assign data points to different clusters. In fact, if
the raw values of some features are larger in absolute value or are more spread relative to their mean,
they can have a disproportionate effect on the decision boundary of the model. This step was unnecessary
for the decision tree because it is a non-parametric model based on partitioning the feature space through
“if” conditions and is thus independent of the scale of variables.
In an attempt to train algorithms that would be able to generalize well to new data, we removed also
some machine-dependent features collected in the dataset, namely the identification numbers of the ports
used by the various protocols.

2.2 | Decision Tree Outcomes and Feature Selection on Edge-IIot 2022
As common practice in ML, we divided the data into 80% for training and 20% for testing by setting
an arbitrary random seed for the splitting, in order to ensure the replicability of our results. We limited
the maximum depth of the tree to 20, in light of our aim of obtaining a simple model, and evaluated
its performance using the classification report function, which showcased the following results, where 0
denotes the class of cyber-attacks while 1 denotes the class of normal traffic (for the definitions of the
evaluation metrics see Appendix C):
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precision recall f1-score support

0 0.97 0.86 0.91 4985
1 0.97 1.00 0.98 26575

accuracy 0.97 31560
macro avg 0.97 0.93 0.95 31560

weighted avg 0.97 0.97 0.97 31560

The high accuracy of the model shows that the decision tree was indeed able to distinguish quite well
between cyber-attacks and normal traffic but underestimated the number of connections caused by an
attack, as can be seen from the relatively lower recall of class 0. To verify whether this relatively simple
model could be improved, we tried to tune the hyperparameters of the decision tree. Using a cross-validated
random search through a list of possible parameter values, different models were trained on the training
part of the dataset to determine which of them maximized the accuracy metric, using the pre-implemented
function RandomSearchCV. The optimal values identified with this procedure as well as the structure of
the best decision tree are presented below:

Figure 2.1: DT with optimal parameters

Figure 2.2: Structure of optimal DT

The average cross-validated1 accuracy of this decision tree remains almost unchanged compared to the
original at 0.9745 with std. deviation 0.002 and the classification report shows no improvement in the
recall rate of the class of cyber-attacks. Still, the results obtained from either decision tree are more than
satisfactory and illustrate the performance that can be achieved with ML methods in cyber security. As
can be observed from the figures above, the best decision tree obtained is even simpler than the one first

1In repeated K fold, the dataset was divided into five folds. For five times, a new fold is reserved for testing and the
remaining four folds are used as data for testing. After each of the folds has been used for testing once, the data is shuffled
so that the folds have new configurations, and the same five-step process is repeated. This continues for five rounds for a
total of 25 cycles of training and testing. The advantage of using repeated k fold for cross validation is that it shows how
well (or poorly) the model generalizes to unseen data. It also reduces the risk of overfitting to a single train-test split.
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obtained and yet it performs incredibly well on the dataset. This shows that a too complex model might
run into the risk of overfitting and not generalising well to unseen data in this context. Therefore, we
further analysed the importance of the various features according to the decision tree, to understand the
origin of its predictive success. It was found that most of the available columns were not considered in the
data partitions performed by the decision tree and instead only 10-15 features were used (as clear from
the figure below). Therefore, it is possible to reduce the high dimensionality of the dataset by removing
all those variables unnecessary for predictions and focusing on the analysis only of tcp.seq, mqtt.hdrflags,
tcp.ack, tcp.connection.synack, tcp.len, tcp.flags, . . . These findings were indeed found to be correct since
a decision tree trained only with this subset of features performed equivalently to the model with all
covariates in terms of accuracy and recall (of the attack class).

Figure 2.3: Feature importances according to optimal DT

2.3 | Clustering and PCA for cluster visualization on Edge-IIot 2022
We then compared the decision tree’s performance to the two unsupervised algorithms, k-means and
DBSCAN, that were used to group data points on the whole dataset as either belonging to attack or
normal traffic. Therefore, we fitted the K-means algorithm on the standardized dataset to split it into
two clusters and compared such labels with the correct classification of each observation. Specifically,
since K-means (and also DBSCAN) only detect different groups of data points with similar features, thus
assigning them arbitrary labels, we had to exchange the predicted labels (i.e. normal traffic or attack
type) within each cluster so that they matched the highest occurring true label in that cluster.
The classification report shows that both the accuracy and the recall of class 0 (as well as the other metrics)
were significantly lower compared to results obtained for the decision tree. In the case of DBSCAN,
as explained also above, the algorithm searches for an optimal number of clusters given some input
parameters that dictate clusters’ properties. Therefore, we tried to implement different variations of
DBSCAN for various combinations of parameter values, namely min samples split ranging from 1000
to 5000 in steps of 500 and epsilon ranging from 0.1 to 1 in steps of 0.2. While the number of clusters
selected by the algorithm usually exceeded 2, there was a unique case for min samples split = 1500 and
epsilon \approx 0.3 in which two clusters were detected. We resorted to this instance to compute the
metrics relative to our binary classification problem of normal vs anomalous traffic. It was found also in
this case that the clustering algorithm was not suited to differentiate between the two classes:
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precision recall f1-score support

0 0.00 0.00 0.00 24301
1 0.83 0.88 0.86 133499

accuracy 0.75 157800
macro avg 0.41 0.44 0.43 157800

weighted avg 0.70 0.75 0.72 157800

Figure 2.4: Classification report of K-means

precision recall f1-score support

0 0.02 0.00 0.00 24301
1 0.84 0.97 0.90 133499

accuracy 0.82 157800
macro avg 0.43 0.49 0.45 157800

weighted avg 0.72 0.82 0.76 157800

Figure 2.5: Classification report of DBSCAN

To better visualize the clusters and evaluate qualitatively how much they differed from the true ones,
we performed PCA on the dataset, thus plotting the two directions of the dataset’s maximum variance,
colour-coding the data points for the cluster being considered (blue denotes normal traffic and yellow
instead anomalous traffic):

Figure 2.6: Datapoints colour-coded for K-means against true clusters
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Figure 2.7: Datapoints colour-coded for DBSCAN against true clusters

Overall, these clustering algorithms show both qualitatively and quantitatively a much lower performance
compared to decision trees with recall rates of the attack class almost identical to zero. In addition,
it is significantly more difficult to interpret the common characteristics of data points within a given
cluster and thus also to understand which features are truly important for predictions. This shows that
unsupervised algorithms applied directly to the data are not suited for the binary classification problem
of distinguishing normal and anomalous traffic in this cyber security setting. This justifies the creation of
custom labelled datasets to train suitable ML algorithms.
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3 | Our DOS Attack Dataset

In this section, we will attempt to create a realistic and machine-independent dataset to train a decision
tree that will distinguish normal traffic between clients and a server from traffic due to a Denial of Service
or DOS attack on the server.

3.1 | Simulations and Dataset Creation
First, we focused on generating realistic normal traffic between a given number of clients and a server, which
we implemented on our local devices using the Python socket library. Inspired by the site [12], we created
two Python scripts to simulate the exchange of packets between multiple clients and a multi-connection
echo-server, which would send back the same messages it received. Since both clients and servers were
locally implemented on our devices, it was not possible to make them exchange information using http
packages about the given sites’ information, as would be the case for a web server. Instead, the clients and
server sent and received respectively simple TCP packets with relatively short string messages encoded
using utf-8. The length of the strings, and thus of the TCP messages, was randomly selected from a
Gaussian distribution with a mean of 100 characters and variance of 20. Moreover, also the content of the
string messages was randomly generated. Furthermore, the number of clients accessing the server was kept
constant throughout the simulation. Even if this might not appear to be realistic, at first, we realized that
the traffic generated by a new client was equivalent to a higher quantity of messages sent by the already
existing clients. As a matter of fact, in the final dataset, these two phenomena were completely equivalent
as the port numbers of the clients were to be removed since they represented machine-dependent features,
not relevant for a general analysis of DOS attacks. Therefore, despite the constant number of clients,
the quantity of network traffic was modelled in such a way that it could vary significantly over the time
period of the simulation. In fact, by updating the time delay between consecutive messages based on the
previous pauses, it was possible to simulate “peak” periods of high network traffic and periods in which
just few messages were exchanged. The delays of the messages sent and received thus evolved like in a
dynamical system with 2 main phenomena:

■ Standard background traffic periods, in which the value of delay undergoes small random fluctuations,
which are normally distributed and constant over time, and experience larger sinusoidal and time-
dependent fluctuations, which mirror the natural evolution of traffic on real servers over longer time
periods.

■ Peak traffic periods, in which once the time delay between messages drops below a given threshold
(and so the client-server traffic has already increased substantially), there is a much faster polynomial-
time growth of traffic. After gradually reaching a maximum amount of traffic, the number of messages
exchanged between the server and clients slowly decays in polynomial-time back to the original
amount of standard background traffic. In this way, we were able to simulate the evolution of
network traffic on a hypothetical web-server in which there are sometimes sudden and substantial
changes in traffic as a result of individuals sharing some news, or some other social effect, which
features a breakout point.

The next step was to find a way to simulate the DOS attack on the local IP address of the server. To
execute the attack, we resorted to the Python script created by [13], thanks to which we were able to
simulate DOS for an arbitrary time interval with an adjustable number of threads (affects how much
anomalous traffic is generated).
Finally, we were ready to run the full simulation with both normal and anomalous network traffic, collecting
all the relevant features using the Wireshark application, [15]. Therefore, we run two simulations lasting
approximately 2.5 hours in total with two DOS attacks with a duration of 30 seconds. This was done
to make sure that the proportion of observations corresponding to anomalous traffic were realistically
much lower than the number of rows for normal traffic, aiming ideally for 15% of attack traffic as in the
Edge-IIoT 2022 dataset.
For each simulation, we initialized a server on the IP address for loopback traffic capture “127.0.0.1”,
which received packets on an arbitrary port number (in our case 12345) higher than 1000 (lower port
numbers might be used by operating system and so unavailable for usage). Then, once the server was
listening on the given port, the Python script for the clients was run and the TCP packets began to be
transferred between clients and servers. Then, the script for the DOS attack was run for a duration of
30 seconds and using only 50 threads. This choice was made due to some technical difficulties with the
duration of the simulation, and also in an attempt to align the promotion attack traffic to the dataset
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above. Using Wireshark, we first analyzed the density of traffic in given time intervals to evaluate, at
least qualitatively, the differences between normal and anomalous traffic and to validate the simulated
data’s realism. Specifically, we relied on the following two graphs (with logarithmic scale) of normal and
anomalous TCP packets recorded every 5 seconds:

Wireshark I/O Graphs: 2_1_2025_part1.pcapng
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Figure 3.1: First simulation of normal traffic with DOS attack

Wireshark I/O Graphs: 2_1_2025_part2.pcapng
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Figure 3.2: Second simulation of normal traffic with DOS attack

The graphs revealed significant differences, with normal traffic showing a relatively steady rate punctuated
by naturally occurring peaks, while the DOS attack periods exhibited sharp and sustained spikes in traffic
density. These plots are thus crucial not just in understanding the traffic patterns, but also in validating
the simulated data’s realism.

3.2 | Dataset’s Analysis with DT
Once the two simulations were completed, the data, with the TCP columns found relevant in the Edge-IIot
2022 dataset, was exported from Wireshark into a csv file. After a few data cleaning steps, which
included removing any incomplete entries, handling any missing values and removing any residual traffic
from sources outside the simulation, the two datasets were concatenated into a single data frame. The
non-numeric column entries were then removed, and each observation of the dataset was then labelled
as normal (class 0) or anomalous (class 1). To perform this task, we selected all messages in the time
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intervals in which we had run the DOS attack script and labelled as anomalous those that had a port
number different from the server port, 12345. We found that the percentage of anomalous traffic amounted
to 33% of the all observations and despite being significantly higher than the one in Edge-IIoT 2022, it is
still realistic enough. We then proceeded to train a decision tree on 60% of the dataset’s observations
setting its maximum depth to 3 in order to obtain a simple and interpretable model. The classification
report for this model, despite its simplicity, shows incredibly high results:

precision recall f1-score support

0 1.00 1.00 1.00 539396
1 1.00 0.99 1.00 268515

accuracy 1.00 807911
macro avg 1.00 1.00 1.00 807911

weighted avg 1.00 1.00 1.00 807911

We then moved on to analyze which features were most important for predictions and since the most
important trademark of the DOS attack is the incomplete 3-way handshake, leaving the server waiting for
additional info, it is not surprising that the most important feature is indeed tcp.ack.

3.3 | Dataset’s Validation with K-means
In this subsection, we run the K-means unsupervised algorithm on the unlabeled version of the dataset in
order to evaluate whether our dataset was too simple/unrealistic compared to the Edge IIoT 2022, thus
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testing the validity of the above performance metrics for the decision tree. By running the K-means with
two clusters on the whole dataset we obtained the following classification report. On the unlabeled version
of the dataset, we also run the K-means clustering and use it as a benchmark to evaluate whether our
dataset was too easy to be analyzed or was instead of comparable difficulty compared to the Edge-IIoT
2022. The two groups of data points found by the algorithm are presented below:

precision recall f1-score support

0 0.80 0.99 0.89 1347170
1 0.98 0.50 0.66 667353

accuracy 0.83 2014523
macro avg 0.89 0.75 0.77 2014523

weighted avg 0.86 0.83 0.81 2014523

The recall of the attack class (category 1) shows that the clustering algorithm mislabeled attacks as normal
traffic for half of all anomalous traffic observations. Moreover, also the overall accuracy of the model
is significantly lower compared to the values attained by the decision tree. In addition, despite being
higher than the measurements obtained for the clusters created by K-means in the Edge IIot 2022, both
statistics are still of comparable magnitude. This confutes the previous hypothesis that our dataset was
too simplistic for the ML algorithms employed and thus supports our conclusions concerning the decision
tree in the previous section. The recall of the attack class (category 1) indicates that the clustering
algorithm incorrectly labeled attacks as normal traffic for half of all anomalous traffic observations, thus
exposing its great shortcomings. Additionally, the overall accuracy of the model is significantly lower
compared to the values achieved by the decision tree in section 3.2. Despite these metrics being higher
than those obtained for the clusters created by K-means in the Edge IIoT 2022 dataset, the latter are still
of comparable magnitude. This refutes the earlier hypothesis that our dataset was too simplistic for the
ML algorithms used, thereby supporting our conclusions regarding the decision tree in the previous section.
To better grasp the evaluation metrics reported above, we performed principal component analysis (PCA)
on the dataset in order to plot K-means clusters against the true clusters. In this way, we managed to
verify our findings also qualitatively (blue data points represent normal traffic and yellow data points
represent anomalous traffic):

Figure 3.3: Visual comparison of K-means and true clusters
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4 | Our Brute Force Attack Dataset

As a second simulation of cyber-attack we choose the “brute force” password guessing. We opted for
this specific instance because it is a common and practical method used by attackers to exploit weak
authentication mechanisms.
This simulation is based on the SSH protocol, a brief introduction to it appears in Section 1.1.

4.1 | Simulations and Dataset Creation
In order to carry out the simulation we set up an online server with the following features (using the
Linode cloud hosting provider): Ubuntu 24.04 LTS, 1 CPU Core, 25 GB Storage, and 1 GB RAM. We set
up 2 users on this remote server with the respective passwords.
For the normal traffic we created a script called “normal SSH.py” which can be found in the github
repository. We repeatedly ran 6 different simple Linux commands intended for gathering system information
and testing SSH traffic. Each time we logged in with one user by entering the correct password and after
executing the command we logged out. The commands we executed are the following:

■ ls -l : lists files and directories in the current directory. It shows details such as permission, ownership,
size, and modification date

■ df -h : prints disk space usage

■ whoami : tells the logged-in users’s name

■ cat /etc/os-release : prints the system information such as name, version, and other details

■ uptime : shows how long the system has been running, number of users, and the system load
averages

■ echo ‘Testing normal SHH traffic’ : it simply prints the string.

The main Python library used for establish SHH connections to remote servers and implement SSH
protocol is “paramiko”, [11].
On the other hand, in order to simulate the brute force attack we used a script that attempts multiple
username-password combinations to connect to a remote server. Indeed in the repository there is also a
CSV file named passwords.csv which is used in the attack simulation. In order to avoid legal and ethical
issues we run the malicious script on a Kali Linux virtual machine. This particular machine is specifically
designed for security researchers. In addition to acting as a sandbox for our main machine, it includes a
vast collection of tools used for testing security. The specifications of the VM are Linux (64-bit, kernel 5.x),
2.5 GB RAM, and 1 vCPU. So we ran first the script simulating normal traffic for about 5500 seconds
(about 80 minutes) and around the 1000th second (16th minute) we executed the malicious script which
lasted approximately 100 seconds, the time it took to attempt the login with 500 different passwords. As
we can see from the graph below, there is a significant increase of exchanged packets around the period
mentioned above.

Wireshark	I/O	Graphs:	normal_attack_27_01.pcapng
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Figure 4.1: Wireshark graph of traffic for Brute Force simulation
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With Wireshark we have been able to capture the traffic during the simulation and especially we registered
the TCP and SSHv2 (newer and more secure version of SSH) packets exchanged between the online server
and the virtual machine. First of all we notice that both during the normal and the attack part there is a
sequence of alternating TCP and SSH packets with almost the same proportion over the whole period of
simulation. This was as expected, since the SSH protocol is based on the TCP one. The main features we
decided to record for the anomaly detection are mainly the ones reported in section 1 of the introduction
and they are aligned with those found to be most important also in the previous sections.

4.2 | Dataset’s Analysis with DT
As we did for the DOS attack we proceed with the anomaly detection analysis using the decision tree.
First of all we encoded all the binomial categorical variables in 0 or 1’s (e.g. “set” → 1, “not set” → 0).
Then the non-numeric column entries were removed. So we took care of the labeling process to ensure
the data is categorized for supervised learning. For this task we used the fact that we knew the exact
interval time at which the attack was run. The result is that we got around 22% of attack traffic, which is
more aligned with the percentage of the Edge-IIoT 2022 dataset (15%). We then proceeded to train a
decision tree on 60% of the dataset’s observations setting its max depth to 4 in order to obtain a simple
and interpretable model. The performance metrics for this model, despite its straightforward design,
demonstrate very high outcomes, but still a bit worse than the ones found in Section 3.2.

precision recall f1-score support

0 1.00 0.99 1.00 7869
1 0.98 1.00 0.99 2239

accuracy 0.99 10108
macro avg 0.99 1.00 0.99 10108

weighted avg 0.99 0.99 0.99 10108

We then moved on to analyze which features were most important for predictions:

0.0 0.2 0.4 0.6 0.8
Importance

tcp.stream

tcp.ack

tcp.seq
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tcp.len

tcp.window_size_value

tcp.time_delta
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at
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e

Decision tree - Feature significance

As we can see tcp.stream has the highest importance (close to 1.0). The most plausible explanation of this
result is that, during the attack period, multiple SSH connections are established (and so also the relative
TCP connections) in a rapid succession and so the value of tcp.stream is changing more frequently than
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in the normal period. Indeed in the normal SSH simulation, the user is staying connected to the server for
a longer period and so also the TCP session persists longer.

4.3 | Dataset’s Analysis with k-means
We proceed our analysis by running the k-means algorithms on the unlabeled dataset. Again our goal is
to understand whether our dataset is too simple/unrealistic. By running the K-means with two clusters
on the whole dataset we obtained the following classification report:

precision recall f1-score support

0 0.82 0.97 0.89 19610
1 0.71 0.26 0.38 5658

accuracy 0.81 25268
macro avg 0.77 0.62 0.64 25268

weighted avg 0.80 0.81 0.78 25268

The recall value for the attack class (1) (26%) highlights a bad ability in classifying the elements of this
class, there are too many False Negatives. On the other hand, at least our model does not mistakenly
classify data as an ’attack’ when they actually belong to the simulated normal traffic. To grasp also
qualitatively the performance of the k-means we first perform PCA and then plot K-means clusters against
true clusters. As we can see from the plots we can see that the k-means was able to identify the general
clustering structure in the data, but its assignments are not perfect. Misclassifications are evident in
regions where the clusters are closely spaced or overlapping, which suggests that this algorithm struggled
with ambiguous points near the cluster borders. In the end we can say that k-means is less effective in
detecting brute-force rather than Dos attack (the recall of the attack class is indeed lower), but again it is
confirmed that k-means is not well suited for this task.
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Figure 4.2: Comparison of K-means and true clusters

Page 14



ML for Anomaly Detection in Cyber Security

5 | Differential privacy

While the primary objective of anomaly detection is to yield high detection accuracy, the requirement of
privacy is also paramount. The latter requires that no sensitive information is leaked to untrusted parties.
One of the most successful standards for asserting formal privacy guarantees is differential privacy (DP).
Assuming that the specifications of our network recordings are in a sense vulnerable data and need to be
protected from unauthorized access, in this section we investigate how a differential privacy mechanism
can be added to our ML model, in order to guarantee the privacy of data, and we analyze how performance
is affected.

5.1 | Introduction
Protecting data privacy has been a major concern in many applications, because sensitive data are being
collected and analyzed. In the early 2000’s, differential privacy ([4, 5]) has been proposed as a criterion
to guarantee the privacy of input data from the output. More precisely, DP ensures that by looking
at the statistical results calculated from a dataset, one cannot tell (in probabilistic terms) whether the
input data contain a certain record or not. More formally, an (ϵ, δ)-differential privacy mechanism M is a
randomized function that maps input datasets D to outputs R such that the following property is satisfied
for any two adiacent datasets D and D′ (differing by at most one record) and for any subset S ⊆ R:

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ ,

where

■ ϵ ≥ 0 (privacy budget) controls the privacy loss (smaller ϵ means stronger privacy guarantees);

■ 0 ≤ δ ≤ 1, when δ is different from 0, the original ϵ-DP is relaxed to approximate differential privacy,
(ϵ, δ)-DP.

In our case, we focus on the original (strict) ϵ-DP definition (i.e. we take δ = 0).
The most common method for achieving DP is injecting calibrated noise into various stages of the process,
including the input data itself, the output of ML models, or even the model weights or internal parameters.
This can be done using the “Laplacian mechanism”, which works by adding noise coming from the
Laplacian distribution2 to each feature of the dataset. Namely, once the privacy budget ϵ is chosen, for
each feature A of the dataset, the scale parameter of the Laplacian is usually taken to be the “l1-sensitivity”
of the dataset over the privacy budget ϵ, where the l1-sensitivity amounts to the maximum absolute
difference between any two possible values in the feature A:

lap(A) =
l1-sensitivity(A)

ϵ
,

where l1-sensitivity(A) = max(A)−min(A).

5.2 | Our approach
We aim to investigate whether the employment of differential privacy in our framework leads to a significant
reduction in model accuracy or if the performance remains satisfactory. Our setting is the one of Section
3, i.e. anomaly detection of the DOS attack through the Decision Tree algorithm. In particular we choose
to inject Laplacian noise on the row data after they are split in “train” and “test” for the Decision Tree.
To be specific, we add the noise to all the features apart from the flag-features and the discrete features,
since the Laplacian noise is obviously a float number. Again, the complete code of our experiments can be
found at the github page, [9]. As we can see from Figure 5.1 below, we decided to test different values of
the privacy budget ϵ, namely all the integers from 1 to 10. Such relative high budgets is justified by the
fact that our investigation deals with a machine learning algorithm (Decision Tree). Indeed in ML the
value of ϵ is taken slightly bigger than the one normally used in the database query setting (see e.g. [2]
for more details). Simultaneously, we also decided to compare the performance of Decision Tree algorithm
while varying the hyperparameter “max depth”. This is crucial for optimizing the trade-off between model
complexity, performance, and privacy. As expected, as the privacy budget decreases we have a decrease

2The probability density function of Laplacian distribution is: f(x | µ, b) = 1
2b

exp
(
− |x−µ|

b

)
, where µ is a location

parameter and b > 0 a scale parameter.
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also in the accuracy of the model. However the level of the performance is still acceptable. An interesting
fact is that, regardless of the max depth value, the accuracy tends to converge to 0.83 when the privacy
budget is equal to 1.

Figure 5.1: Line graph of Accuracy vs Quantity of Noise
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6 | Conclusions

In our paper, by conducting a preliminary analysis of an already tested and established dataset, the Edge
IIoT 2022, we have derived some important requirements for a good dataset and have enforced the latter in
the creation of two artificial datasets for DOS and Brute Force attacks detection. In this process, we have
critically analyzed supervised and unsupervised learning algorithms on all these datasets, with the dual aim
of evaluating the applicability of ML algorithms in the IDS problem and of validating the complexity of our
datasets. To better highlight the differences and similarities between the datasets and the performance of
Ml methods, we summarise our findings in the table below: (the recall refers to the recall of the attack class)

Our DOS Dataset Our Brute Force Dataset Edge-IIoT 2022

Decision Tree
Accuracy 1.00 0.99 0.97
Recall 0.99 1.00 0.86

K-means
Accuracy 0.83 0.81 0.75
Recall 0.5 0.26 0.00

DBSCAN
Accuracy 0.82
Recall 0.00

Table 6.1: Performance Metrics for different datasets and ML models

Overall, Table 6.1 demonstrates that supervised ML algorithms, namely decision trees, are suitable to
detect a wide variety of Cyber attacks in different types of networks. Differently, unsupervised algorithms,
mainly K-means and DBSCAN, showcase a strikingly poor performance because they don’t have any
previous information about the datasets. Still, such clustering algorithms have the potential to play
an important role in comparing the complexity, and so the realism, of different artificial datasets. In
fact, by using as a benchmark the performance metrics like accuracy/recall/... of such models with no
previous information on the data, one can analyse more critically the advantages brought by supervised
algorithms. Accordingly, this further reinforces the necessity to create realistic, labeled and possibly
machine-independent datasets to train proper IDS that can effectively detect cyber threats. Yet, the
attainment of such an objective in the near future seems to be constrained by a number of factors including
hardware/software availability for simulated datasets as well as privacy issues involving data treatment on
real networks’ data. To address the second problem, we investigated how differential privacy could be
implemented on our model for anomaly detection, and we analyzed how it affects the performance. As
expected, the higher are the privacy guarantees, the lower is the accuracy of the model, but still the level
is good.
Notwithstanding this, we hope that the careful treatment of the topic of ML in cyber security in this paper
together with our careful treatment of data in the DOS and the Brute Force datasets, will provide a way
to further advance this field of research, by providing easily implementable solutions for any researcher.
We still remain conscious of the many limitations of our study and of the many details of both the analysis
and the datasets, which can be surely better fine-tuned and will be discussed in the next section.

7 | Future improvements

First, the realism of the simulated datasets created for both DOS and Brute Force could be improved by
several means. As a matter of fact, for the DOS dataset, we could try to simulate multiple attacks varying
the number of threads used in each as well as the duration, even if this would require a much longer
simulation, for the normal traffic to balance the attack traffic. On top of this, as far as the Brute Force
dataset, we could experiment different kind of attacks such as Slow brute-force attack (login attempts
are spread over an extended period) or distributed brute force attack (attacks originates from multiple
IPs). Another idea worth exploring is to perform a multiple anomaly detection mixing the two kinds of
attacks. Moreover from the standpoint of the datasets’ analysis, due to the potentially very large number
of recorded features in a real network, it could be beneficial for both efficiency and performance to first
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apply dimensionality reduction to the dataset before training the ML algorithms. In this paper, we have
not followed this route since the datasets we used were relatively small, and also because, we wanted to
preserve the original features in an attempt to better interpret the results of our models, namely deriving
which features are essential for cyberattacks’ detection. However, in some situations, it might be beneficial
to forego interpretability in favour of simpler datasets as well as computational performance and we must
admit that such prospect is quite promising. In fact, when applying PCA to the datasets, we found that
in the Edge IIoT 2022 dataset (the one with the most features) more than 90% of the variance of all 40
columns was contained within only 20 principal components and that the last 10 principal components
contributed infinitesimally to the variance, as can be noticed from the line-graph below:

Figure 7.1: Proportion of variance contained in principal components

Finally, as far as the privacy issue, an interesting direction of future investigation is studying other
modalities of applying differential privacy. First of all we could investigate how the noise injection works
at the different steps of the Decision Tree algorithm. This would require in particular a preliminary deeper
analysis of how the Decision Tree algorithm works. Another interesting test would be to use a different
sensitivity metrics, such as the l2-metric, together with noise coming from the Gaussian distribution.
In the broader context of ML, the issue of the trade-off between privacy, performance, and complexity
is quite a hot topic nowadays. While there are many works in the literature aiming at combining these
apparently contrasting issues, i.e. privacy on one side, and performance and complexity on the other side,
some authors ([2]) raised serious concerns regarding the possibility of bringing together these issues in the
context of ML. An interesting line of future work is then to investigate to what extent the criticisms of [2]
could affect our implementation of DP to anomaly detection.
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Appendix

A | Decision Trees

Given a matrix of features with which to predict a given class, the decision tree (DT) classifier algorithm
will identify comparisons, based on features’ values, between data points that will separate as much as
possible data under one label from data under another label. In our case, it compares specific characteristics
of network traffic to split traffic instances into groups containing either normal or attack labels. It will
continue to apply such comparisons, based on simple if conditions, until every group contains only one
type of traffic and the node of the DT, for which all contained observations belong to the same class
(obtained as a leaf of the DT), is said to be pure.
After training finishes, the nested structure of if-statements partitioning the space of possible feature
values can be applied to classify unlabeled traffic instances. This series of true/false comparisons will
categorize the new traffic data strictly based on the conditions satisfied by training traffic. Some of the
most useful parameters for decision trees, which correspond to the ones adjusted in the hyperparameter
tuning of the DT, in Section 2, include:

■ max depth: how many levels the tree can have, starting from the first comparison and adding a new
level for subsequent splits of the parent groups.

■ max leaf nodes: how many split groups of data (leaf nodes) the tree can have. Unlike max depth,
this parameter does not consider the symmetry of the tree, allowing for one group of data to be
split for multiple levels while other leaf nodes remain at higher levels without being split.

■ min samples split: how many datapoints must be included in a parent group for a comparison to be
applied.

■ min samples leaf: how many datapoints must be in each of the leaf nodes resulting from a split in
order for a comparison to be applied.

■ max features: how many of the dataset’s features can be considered when selecting a feature with
which to make a comparison. Sometimes, this parameter can be expressed as a mathematical
function, like

√
x or log2(x), of the total number of features.

Furthermore, decision trees are also easily interpetable ML algorithms thanks to their straightforward
visualization. In fact, the decision tree’s representation offered by python’s library scikit-learn permits to
visualize the different comparisons carried out by the DT at each level of the latter. Each box includes
the binary comparison used to separate the traffic into leaves, the total number of observations that fall
into the leaf (samples), the number of observations in each classification formatted as [anomolous, normal]
and also the Gini coefficient which is an index of the impurity of a given node (0 for a pure node and
close to 1 for a node with a mix of different classes). More formally, Gini is a metric ranging from 0 (the
node is pure) to 1 (the node contains a mif of different classes) and defined as:

Gini = 1−
n∑

i=1

p2i

where pi denotes the proportion of observations belogning to class i in that node.
In addition, decision trees also provide a way to assign to each feature its importance, which quantifies
with an information theoretical metric the relevance of that column in affecting the model’s prediction
and loss reduction. More concretely, the feature importance is calculated based on a measure of the
improvement in purity from a decision node, in which datapoints of different labels are grouped together,
to the leaf nodes, which split the datapoints into more homogenous groups. The overall importance of a
feature is thus the sum of the improvement in purity for all decision nodes which use that feature to split
the data.
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B | Clustering algorithms

Unlike the supervised learning models, the unsupervised models, chiefly K-means and BSCAN, are not
given any previous information on the structure of the data and its classes. These algorithms are thus
trained on the whole dataset to identify clusters of data points with similar characteristics and also to
detect any outliers. In the context of our paper, clustering algorithms are useful for both binary and
multi-class IDS problems because they can be used to discover hidden patterns for different types of traffic
without the need for human intervention.

B.1 | K-means clustering
K-means clustering is a simple unsupervised algorithm that groups data points in a number of clusters
specified as input. From a practical standpoint, a datapoint is simply a vector in some high-dimensional
space whose cluster is, at least initially, randomly assigned and based on these assignments, the centroids
of the clusters are computed. The latter are meant to represent the mean of all instances of vectors within
a given cluster. The algorithm continuously assigns each datapoint to the cluster represented by the
nearest centroid and then moves the centroid to the position of the new mean of the cluster. Eventually,
the centroids converge to or fluctuate around some value (within a given error bound) and thus cluster
classifications remain stable.
Because k-means uses the Euclidean distance to the nearest centroid as the proxy for determining what
cluster a datapoint belongs to, it assumes that the clusters are convex shaped, such as circles or ellipses.
To account for the possibility of an arbitrary number of non-convex clusters, we also tested the DBSCAN
algorithm.

B.2 | DBSCAN
Like k-means, DBSCAN (Density-Based Spatial Clustering of Applications with Noise) works by partition-
ing datapoints to determine cluster boundaries. However, this algorithm requires no input regarding the
number of clusters to find. Instead, it first identifies core points as datapoints that are within a certain
radius of several other datapoints in multi-dimensional space. Groups of core points are considered areas
of high density, and each group forms the center of a separate cluster. At the edges of the clusters, the
core points may be within radius of other datapoints that are still part of the cluster, even though they
aren’t within radius of enough other points to be considered core points themselves. All other datapoints
which don’t connect to a core point are considered outliers.
A list of the main parameters to consider when using DBSCAN are:

■ eps: the radius around a datapoint within which to search for other datapoints. This is a very
important parameter for DBSCAN, as it determines the distinction between core and non-core
points, significantly influencing the results of clustering.

■ min samples: the number of datapoints that must be within radius of a datapoint for it to be
considered a core point - also a significant determinant of clustering results.

■ metric: the method used to calculate distances such as radiuses in multi-dimensional space, which is
set by deault to the euclidean metric.
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C | Evaluation metrics

Accuracy and recall (especially of the attack class, in our case) are often the most useful metrics for
comparing the performance of different algorithms. In binary classification, accuracy refers to the ratio of
datapoints correctly identified as their true category (either normal or attack, in our case) over the total
number of traffic instances in the dataset:

Accuracy =
TrueNegatives + TruePositives

TruePositives + FalsePositives + TrueNegatives + FalseNegatives

Precision is instead the ratio of correctly predicted traffic under a certain category (normal or some type
of attack) over the total number predictions made for that category. Instead, recall is the ratio of correctly
predicted traffic under a certain category to the total number of datapoints that actually fit into that
category.

Precision =
TruePositives

TruePositives + FalsePositives
Recall =

TruePositives

TruePositives + FalseNegatives

Finally, the F1-score refers to the harmonic mean of precision and recall:

F1 =
2 x Precision x Recall

Precision + Recall
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